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Cluster calculations have proved one of the most fruitful means of extracting 
useful information about solid-state defect properties at finite computational 
expense, but large clusters are necessary to obtain reliable results and uncer- 
tainty always remains concerning the effects of edge states, with "ad hoc" 
boundary conditions such as the saturation of the surface with hydrogen 
atoms being frequently employed. Recently methods have been developed 
for "embedding" the cluster in the perfect crystal so that the solution obtained 
from the cluster calculation is the same as would have been obtained from a 
full calculation on the whole defective solid. Here the relationships of these 
methods with each other and with "perturbed crystal" methods which modify 
the perfect crystal solution to account for the presence of the defect are 
explored. It is shown that the "embedding potential" technique is preferable 
and is equivalent to methods that have been used in other fields. 
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1. Introduction 

What equations of motion must be solved within a subdomain of a quantum 
system to obtain within that subdomain the solution of the full equation of motion 
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for the whole system? In the language of the theory of point defects one may 
use either (see, for example, [1, 2]): 

1. The "perturbed crystal" approach where one calculates the effect on the 
solution for the perfect crystal of a perturbation of finite range representing the 
defect, or 

2. the "perturbed cluster" approach where one calculates the effect of the sur- 
rounding medium on the solution for a cluster of atoms surrounding the defect. 

The two methods are equivalent and both lead to the concept of an energy- 
dependent "embedding potential" which must be added to the Hamiltonian 
within the defect region. Other embedding methods [1, 3, 4] which do not emerge 
naturally from both approaches involve additional unnecessary approximations. 

2. Single particle formalism 

Suppose the system of interest may be sufficiently described by a (non-orthogonal) 
set of basis kets {[ r so that the problem may be stated in matrix form. For 
convenience in dealing with a non-orthogonal basis we adopt the notation of 
Ballentine and Kolar [5] since this enables the matrix relations to be written in 
a natural and unambiguous way. One defines a dual basis set {1r by 

1r ~) = E  ( S - ' ) ~  ]r (1) 
/3 

where 

s /3 = <r 1 /3> (2) 

so that 

( r  ] r = ~/3 .  (3) 

Then a general ket may be expanded in either of the two sets: 

c~ a 

and operators maybe  represented in four different matrix forms. Following Pisani 
[2] the operator Q is defined by 

= e l -  A (s) 

where H is the Hamiltonian and I the identity operator. The Green matrix is 
defined through 

y~ G~':'Q3,~ = 3 ~  (6) 
3 '  

i.e. as the upper representation of the Green function, which is the operator 
inverse of  (~. 

Suppose the basis set is divided into two parts: the C (or "cluster") region in 
which the Q-matrix is altered from its value in the perfect crystal and the remaining 
region D in which the Q-matrix is unaffected. This is inevitably an approximation 
since any defect will generate a multipole field of some order which falls off only 
as an inverse power of distance unless it is screened. 
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Then the fundamental equation of "perturbed crystal" theory is the Dyson 
equation 

G cc  = G ~ + G ~ V c c G  cc  (7) 

where the superscript 0 always refers to the perfect crystal and V is (minus) the 
difference between the Q-matrices in the CC-block between the defective and 
perfect crystals: 

Vcc  = - (  Qcc  - Q~ ). (8) 
Equations (7) and (8) are equivalent to 

( G cc  )-~ = Qcc  - Q~ + ( G~ ) -1 (9) 

which is the "perturbed cluster" equation of Baraff and Schluter [6]. It states 
that the part of the Green matrix within the cluster may be obtained by inverting 
just the CC-block of the Q-matrix provided one adds to the Hamiltonian an 
energy-dependent "embedding potential" 

EGG ( J~) ~-- Q ~  G~ ) -1. (10) 
The existence of such an effective potential had also been noted by other authors 
[7]. 

One can obtain exactly the same result from the "perturbed cluster" viewpoint. 
The Schr6dinger equation may be written in the block matrix form 

[occ QMF, c] 
QDC QDDJLtkDJ = 0  (11) 

and therefore ([8]) 

[ O c c -  QcD(QDD) 1QDc]t~c = 0. (12) 

This is equivalent to solving the Schr6dinger equation within the C-region alone 
with an additional energy-dependent potential 

F~cc ( E ) = QcD( QDD )-I QDc . (13) 

By assumption all the quantities on the right-hand side are unchanged between 
the perfect and defective crystals so one can calculate it given the cluster-projected 
perfect crystal Green matrix for which one can solve by exploiting translational 
symmetry: this is equivalent to the Baraff-Schluter formula. 

In Eq. (13) it is easy to see that if the elements of the Hamiltonian and overlap 
matrices are only significant between "nearby" orbitals then the embedding 
potential is a surface potential, having non-zero elements only between those 
states in the C-region which have significant elements in the CD-block of the 
Q-matr ix  connecting them to the D-region. Arbitrary changes can be made to 
the basis set in the centre of the cluster where the embedding potential is zero 
in order to describe the defect adequately; this is equivalent to the "ad-space" 
method in perturbed crystal theory [9]. It is also clear that once the embedding 
potential has been calculated, it can be used for a variety of different defect 
problems which differ only in the CC-block of the Q-matrix.  
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3. Many-body aspects of the problem 

The simplest case of many-body interactions is that in which the bulk solid may 
beadequate ly  described by a single electron picture, i.e. by a band structure of 
some kind, but many-body effects are important locally at the defect site. Then 
one would expect that the above expressions for the effective embedding potential 
will still hold. This may be demonstrated specifically from both the perturbed 
cluster and perturbed crystal viewpoints. 

4. Corrective operator methods 

The other solutions of the embedding problem which have been proposed without 
reference to the perturbed crystal formalism involve different types of correction. 
These do not share with the embedding potential the feature of being independent 
of the CC-block of the Q-matrix, which, like the embedding potential method, 
they assume is the only part of the Q-matrix to change. Additional assumptions 
about the Green matrix are necessary in these methods in order to use corrections 
calculated for the perfect problem to embed the cluster in the defective crystal. 
Because these methods involve corrections to the Green matrix itself rather than 
to the Hamiltonian, the approximations used mean that the poles in the Green 
matrix at the eigenvalues of the isolated cluster are not fully removed. Three 
methods have been suggested: 

1. A multiplicative corrective operator is used [3] to pass from the inverse of the 
Q-matrix in the cluster region to the Green function within that region. This 
method assumes that 

G c D  = G ~ 1 7 6  (14) 

2. The corrective operator is applied in the "skin region" [1] at the outside of 
the cluster where the Q-matrix elements with the bulk are non-zero, i.e. where 
the embedding potential is non-zero. If this region is denoted by B, then this 
method assumes that 

G BD = G 0/30. (15) 

3. An additive correction is applied to the inverse of the cluster Q-matrix to 
generate the Green matrix [4]. This method assumes that 

G DD = G ~176 (16) 

At first sight it seems that these assumptions are consistent with the requirement 
that there be no change in space charge (since this would change the potential) 
outside the cluster. However the constancy of the Green matrix at each energy 
separately is a much stronger assumption than the constancy of the density matrix. 

Simple examples such as the one-band, one-site model which can be solved 
exactly using the Dyson equation [10] or the embedding potential methods show 
clearly the undesirable features which the corrective operator techniques intro- 
duce near eigenvalues of the isolated cluster. 
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5. Other applications of the formalism 

Note that a l though here the procedure  has been  described in terms of the 

connec t ion  of two subdomains  which are spatially separated,  one could just  as 

well use C and  D regions separated in energy. This is precisely what  is done in 
the "Per ipheral  Orbi ta l"  approach  [11, 12] which has been  used to include 

indirectly the effects of the d-orbitals  in b a n d  structure calculat ions for semi- 
conductors  [ 13]. In  this case one may usual ly  assume that the embedd ing  potent ia l  
is approximate ly  i ndependen t  of energy. 

The fermion Green  funct ions  used in these derivat ions can be replaced by Zubarev  

Green  funct ions  for particle posi t ions and  mom e n t a  [ 14]. Then  exactly analogous 

algebra shows that the dynamica l  behaviour  of a cluster of particles, interact ing 
among  themselves with arbi trary many-body  or anha rmon ic  forces, which inter- 

acts harmonica l ly  with a ha rmonic  embedd ing  region, is the same as that of the 

isolated cluster with addi t iona l  ha rmonic  springs between the particles whose 
spring constants  are f requency dependent .  In  the classical limit this amounts  to 
the rep lacement  of the ha rmon ic  embedd ing  region by its l inear  response funct ion.  

6. Conclusion 

The embedd ing  potent ia l  method  and  equivalent  techniques are to be preferred 

to the other methods  which have been  used to solve the p rob lem of a subdoma in  
of a q u a n t u m  system, both  in the theory of po in t  defects and in other appl icat ions  

It is hoped to publ i sh  a more complete account  of this work and its relat ion to 
other methods  in the theory of defects and  surfaces shortly. 
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